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An exact solution in dos~l form of the coupled dynamic problem of thermoelasticity is obtained for a half-space with a bounda~ 
condition of the first kind. The normal stress, perpendicular to the free surface, in the neighbourhood of the elastic wave front 
is investigated. Copyright O 1996 Elsevier Science Ltd. 

A fairly complete list o1! publications on coupled dynamic problems of thermoelasticity can be found in [1]. Analytic 
methods of solving the: problems described in [1] are effective mainly for small values of the dimensionless time 
of the thermal action. Nevertheless, even high values of dimensionless time correspond to physically short 
dimensional times. For such values the small-parameter method, which is widely used, leads to fairly cumbersome 
solutions. 

The plane coupled problem of thermoelasticity for a half-space with a finite velocity of heat propagation and 
concentrated thermal action was considered in [2]. The assumptions made when inverting the Laplace transform 
are not sufficiently justified. 

1. An elastic half-space z t> 0 is at rest at an absolute temperature T = To up to the instant of time t = 0. When 
t = 0 the temperature of the boundaryz = 0 of the half-space is increased to a value Tc and then remains constant. 
It is required to determine the absolute temperature T and the stress in the half-space, taking the dynamic 
components and the coupling into account. 

We will introduce the following dimensionless quantities 

T-T 0 ¢~, (l-2v)O= ,=cz, t" c2t (I.I) 

r ' --  r c - r 0 '  -- a e~ rc - r0 ) '  z o = T  

where c is the velocity of longitudinal elastic waves, ~t is the coefficient of linear expansion, E is Young's modulus, 
v is Poisson's ratio, and a is the thermal diffusivity of the material. The primes on the dimensionless quantities 
will henceforth be omitted. 

To determine T(z, t) and if(z, t) we need to solve the following boundary-valued problem [1] 

a2~ a2if a2T a 2T . .2, aT .. 2 
a: aT=a-7 r '  a~-~7 "r=(i'~' ' ¥ ' "  T, 

,T,<- .  , o ,< -  (1.2) T ( I ) , t )  = 1, o(0,/) = 0, 

~2 = ( i + v ) E  ¢X2To a 
(l-v)(l-2v) t 

where ~t 2 is the coupling parameter and k is the thermal conductivity. 
The solution of bolmdary-value problem (1.2) can be found by means of a Laplace transformation with respect 

to t. The transforms T*(z, s), o*(z, s) of the required functions have the form [1] 

* ~2 ~.2 • £-~.11 _ e-~.2z r (z,s)= ( - - $ 2 ) ¢ - k l z - < - - $ 2 ) e - ~ 2 z  o (z,s) = 
s2r ' r 

r = V ( S - S l ) ( S - S 2 ) ,  si, 2 = l - ~ t  2+2ila, ~ . l , 2=Vs(s+ l+ l  a 2 + r ) / 2  

argr=arg2k I=arg2k 2 = 0  for s > l - l . t  2 

(1.3) 
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We will demonstrate the procedure for inverting the transforms (1.3) using the example of  O*(z, s). We 
put 

O ' ( Z , s )  =O;(z .s)-O'2(z ,s) ,  O" k =e -~'ld / r ,  k = 1,2 (1.4) 

In the complex s plane with cuts on the negative part of the real axis and the section Is], s2], the functions r, ~.t, 
~2, 0], o~ can be separated into single-valued branches, defined by the initial choice of the arguments in (1.3). 

These branches gl and L2 satisfy the relation 

~.l=s+O(l), ~ . 2 = ~ s + O ( l l ~ ) .  s--~oo 

x,= ,+oO) ,  x 2 = ~ + o ( ~ ) ,  , - , 0  (1.5) 

By the inversion theorem 

m+/, , .  

O(Z't)=Ol(Z't)-O2(Z't)' Ok(Z't)=~l--~7 S o;(z,s)e"ds, k=l ,2 ;  o > I - I x  2 (1.6) 
2 / U  to - /o .  

We will consider a closed contour in the complex s plane formed by arcs of the circles [ s [ = R, [ s I = P, [ s - s t  [ 
= p (k = 1, 2) the edges of the cuts Ims  = 0, ~ < Re s < -p, Re s = 1 - It 2, -2IX + p < Ims  < 2IX - p and the 
straight line Re s = o). The function o~(z, s)e ~ on the arc I s [ = R, by virtue of the second relation in (1.5), satisfies 
the conditions of Jordan's lemma. Using Cauchy's integral theorem and taking the limit as R --~ oo, p - 0 we can 
reduce the integral o2(z , t) from (1.6) to the sum of integrals over the edges of tile cuts (the integrals over the 
circles of radius p vanish in the limit). 

By calculating the values of the radicals on the edges of the cuts using formulae,~om [3], taking into account 
the chosen branches r and L2, we obtain after reduction 

2 
0 2 (z,t) = -A(z,t,IX 2) +e (I-t~)tB(z,t,~t2) (1.7) 

A(z,t.112)=2 i Ye-'2'sinpzdy. B(z.&g 2) i "2 = -- J e -m+ cos(u z -  21at cosy)dy 
q K -x12 

q=4y' +2(l-ix2)y 2 +(l+~2) 2. P=y~,/ii+ix2-y 2 + q ) / 2  

U± = {:1:(1- Ix2)(l-lasiny):l:21a2 cos2 y + (I +~t2 - 21asiny)~/l +1 a2 +2ixs iny}  ~ / ~ -  

When t < z, the function a~(z, s)e st , by virtue of the first relation in (1.5), satisfies the conditions of Jordan's 
lemma on the arc I s I = R, Re s > co. Using the contour formed by this arc and the section of the straight l ine 
Re s = c0 and taking the l imit  as R --> 0% we obtain al(Z, t) = 0 (t < z). 

I f t  > z, then a](z,  s)e = satisfies the conditions of Jordan'slemma on the arc J s I = R, Re s < ¢0. Using the same 
contour as when inverting a~(z, s) we obtain ol(z, t) = etO-#)B(z, t > z) (the sum of the integrals over the edges 
of  the horizontal section is equal to zero). 

The inversion of T*(z, s) is carried out in the same way. Note that in this case the l imit  of  the integral over the 
circle I s I = P is unity. 

We finally obtain 

T ( z , t ) = l _ l i  l+p,2 + q + y  2 2 e-y I sin pzdy- 
~to Yq 

_ # ,_ .2~ ,J2 (1.8) 
J • -¢*: {[ ( I  - 112 X t t  - s i n y )  - 211 c o s  2 y)cos(u_z - 2~u  c o s y )  - 

g -~tt2 

dy 
- ( 1  +112 - 211siny)cosysin(u_ z - 2 l i t  c o s y ) )  ( I  - I~ 2)2 + 41~2 c o s  2 Y [ I  - q ( t  - z ) ]  

O( Z,I ) = A(  Z,t,IX 2 ) - et( I-1~2 ) B( z,t ,bt 2 )[1 - l ] ( t  - z ) ]  

where ~l(x) is the Heaviside unit function. 
A direct check shows that expressions (1.8) are in fact the solution of boundary-value problem (1.2). Note that 

when Ix = 0, Eqs (1.8) becomes the well-known solution of the uncoupled dynamic problem [I]. 

2. The integrals in (1.8) for small values o fz  and t can be evaluated by expanding them in series in ix 2. The 
corresponding solution is identical with the solution obtained by the small-parameter method [1]. 

Note that, by virtue of (1.1), large values of the dimensionless time t correspond to even extremely small values 
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of dimensional time. For large values ofz  and t the small-parameter method is not very effective due to the need 
to retain a considerable number of complex terms. 

A computer calculation of A(z, t, 112), B(z, t, ! x2) for large z and t is difficult due to the considerable oscillations 
of the integrands. 

We will confine ourselves to investigating the stress o(z, t) for large values o fz  and t in the neighbourhood of 
the elastic wave front. 

For an approximate calculation of B(z, t, 112) we will use a method which is essentially an extension of the "short- 
time" method [1]. 

Using the relation ol~tained in Section 1 

L s {e t(i-la2 )B(z,t,112 )q(t - z)} = • -~'tz / r 

where Ls is the Laplace transformation operator, and the displacement theorem, we obtain 

L, IB(z,t.p. 2)q(t - z)l = • -xx / s 2 , f ~ p  2 , k(s,I x2 ) = X t (s + i - p2.p2 ) (2.1) 

Retaining the first th:ree terms in the Laurent expansion of the function ~(s, I az) in the neighbourhood ofs  = ** 

(2.2) 
[, 2 )  8s 16s 2 " 

we substitute the approximate value of k(s, Ix2) thereby obtained into (2.1). Then using the binomial expansion 
and the delay theorem, we h a ~  

[ ~ =e  ~ z g _  z .~o(- i )"  (n!) 1 , 2 . + t  (2.3) 

where L~ 1 is the inverse operator to L,. The series converges absolutely when I s I > 2tl. Using theorem 29.3 of 
[4] in (2.3) it is possible to transfer to the originals term by term. Doing this, using formula 5.5(40) of [5], we 
obtain 

2n tl IX ( t  - z )  
(2.4) 

where Jk(x) is the Be.,~i function of the first kind. The series converges when t >~ z. Using the inequality 
I J~ (4) I ~< I C/2 r ~ [6 !, it can be shown that the series in (2.4) converges and defines the function B(°)(z, t, Ix') that 
is regular in t for all values of t. 

Note that when t < z it is more convenient to use thefollowing series for the calculations 

B(O)(z.t.ll2)=e-aO~ ~. (_1) n (2n)! p2ntz-t)n 12,,(2~lz(z_t)  ) 
• =o (n 9" a~z" 

(2.5) 

(l~(x) is the modified Bessel function of the first kind), obtained from (2.4) using well-known relations connecting 
Sk(x) and l~(x). 

We will estimate the function F(z, t) = B(z, t, 112) _ B(O)(z, t, 112). Applying the prediction theorem ([4], p. 40) 
and theorems on differentiation and on the initial value of the original to the original F(z, t)rl(t - z ) ,  we arrive at 
relations from which, using (2.2), we can successively find 

OF ~)2 F 114 (2 + 112 ) ze"Z~l-P z/2) 
F(z , z )=O,  -~t (z ,z)=O, ~-~--(z.z)= 16 

F(z,t)  = 114(2+1"1"2 ) ze-Z(I-p:12)(t - z) 2 +... 
32 

(2.6) 

Consequently 

F(z,t)=O(114), 112---~0, F ( z , t ) = O ( ( z - t ) 2 ) ,  z--~t 

Note that the order of the error with respect to 112 and z - t is not changed if we take as the approximate value 
of B(z, t, 11z) the sum of the first two terms of series (2.5). 

It follows from (2.8), (2.5) and (2.6), in particular, that the values of the jump in the stress a(z, t) at the elastic 
z wave front is equal to --exp(l~ z/2), which agrees with the results obtained in (1). 
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We will estimate the integral A(z, t, 112). Consider the function O(w), which differs from A(z, t, la z) by having 
x/0 ,4 + 2(1 - w ) y  2 + (1 + ~2)2) instead ofq .  Then 

A(z, t, p.2) = O(la2) (2.7) 

The quantities O(-~t 2) and O'(-~t 2) are expressed in terms of elementary functions of  the errors using relations 
1.4(15) and 2.5(26) of [5], and formally obtained from them by differentiation with respect to the parameter. Using 
the asymptotic expression of the error function for large values of the argument [7], it can be shown that when 
~lt -z/(2~t) >> 1 the inequality O,(_p2) < 0 holds. From this relation and (2.7) we obtain, for sufficiently small 112 

A(z,t,la2)<~(-ll2)=2et~'[e-Z~t'effc(~tl~[t-~2~t)-em'erfc(~t!~[~+~--~tt), I.t12 -- 1 + p. 2 (2.8, 

Hence, for sufficiently small Ix 2 and large t O(__p.2) is the majorant of A(z, t, la2). 
The contribution of A(z, t, ~t 2) to o(z, t) on the right semi-neighbourhood of the elastic wave front z = t is small 

for the values of la 2 and t considered. A calculation for I a2 = 1.14 x 10-2 (steel) with z0 = to = 10 (which corresponds 
to a distance of the elastic wave front from the free surface of 2 x 10 -a m) gives A(z, t, I ~2) ~< 9.4 x 10 -3, whereas 
eO~)tB(z, t, Ix e) = 0.9446. Consequently, for z = to + 0 the term A (z, t, ~t 2) is not larger than 1.1% of the solution 
(1.8). For large values of t o the contribution to the solution of A(z, t, la 2) is reduced. 
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